SCBS685E - MARCH 1997 - REVISED APRIL 1999

● Members of the Texas Instrume <i>Widebus</i> ™ Family	ents	. SN54LVTH162240 SN74LVTH162240 D (TOP ۱	GG OR DL PACKAGE
 State-of-the-Art Advanced BiCl Technology (ABT) Design for 3 Operation and Low Static-Power Dissipation 	3.3-V	10E [1 1Y1 [2 1Y2] 3	48] 2 0E 47] 1A1 46] 1A2
 Output Ports Have Equivalent 2		GND [4	45 GND
Resistors, So No External Resi		1Y3 [5	44 1 1A3
Required		1Y4 [6	43 1 1A4
 Support Mixed-Mode Signal Op		V _{CC} [] 7	42] V _{CC}
Input and Output Voltages With		2Y1 [] 8	41] 2A1
 Support Unregulated Battery O	peration	2Y2 9	40 2A2
Down to 2.7 V		GND 10	39 GND
 Typical V_{OLP} (Output Ground E		2Y3 11	38 2A3
< 0.8 V at V _{CC} = 3.3 V, T _A = 25°		2Y4 12	37 2A4
 I_{off} and Power-Up 3-State Supp Insertion 	port Hot	3Y1 [13 3Y2 [14 GND [15	36
 Bus Hold on Data Inputs Elimin		3Y3 [16	33] 3A3
Need for External Pullup/Pulldo		3Y4 [17	32] 3A4
Resistors		V _{CC} [18	31] V _{CC}
 Distributed V_{CC} and GND Pin 0		4Y1 [19	30 4A1
Minimizes High-Speed Switching		4Y2 [20	29 4A2
 Flow-Through Architecture Op	timizes PCB	GND 21	28 GND
Layout		4Y3 22	27 4A3
 Latch-Up Performance Exceed	s 250 mA Per	4Y4 [23	26 4A4
JESD 17		4OE [24	25 30E

- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'LVTH162240 devices are 16-bit buffers/drivers designed specifically for low-voltage (3.3-V) V_{CC} operation and to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. They have the capability to provide a TTL interface to a 5-V system environment.

These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer and provide inverting outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 22-Ω series resistors to reduce overshoot and undershoot.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

Copyright © 1999, Texas Instruments Incorporated

SN54LVTH162240, SN74LVTH162240 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS685E – MARCH 1997 – REVISED APRIL 1999

description (continued)

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

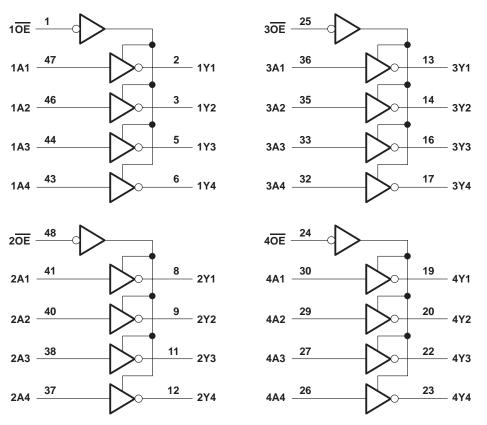
The SN54LVTH162240 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74LVTH162240 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE (each 4-bit buffer)										
INPUTS OUTPUT										
OE	Α	Y								
L	Н	L								
L	L	Н								
н	Х	Z								

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54LVTH162240, SN74LVTH162240 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS685E – MARCH 1997 – REVISED APRIL 1999

logic symbol[†]


1 <mark>0E</mark>	1	EN1				
2 <mark>0E</mark>	48	EN2				
3 <mark>0E</mark>	25	EN3				
	24					
4OE		EN4		_		
1A1	47	┍┸━━	1	 1 ▽	2	1Y1
1A2	46	<u> </u>	·	• •	3	1Y2
1A2	44				5	1Y3
1A3	43	┣───			6	1Y4
	41	┣───	1	2 🖂	8	
2A1	40	┣───		2 ▽	9	2Y1
2A2	38	┣───			11	2Y2
2A3	37	┝──			12	2Y3
2A4	36	┣───		• 77	13	2Y4
3A1	35	┣───	1	3 ▽	14	3Y1
3A2	33	 			16	3Y2
3A3	32	┝───			17	3Y3
3A4	30	└──			19	3Y4
4A1	29	 	1	4 ▽	20	4Y1
4A2	27	 			22	4Y2
4A3	26				23	4Y3
4A4						4Y4

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS685E - MARCH 1997 - REVISED APRIL 1999

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} –0.5 V to 4.6 V
Input voltage range, V _I (see Note 1) –0.5 V to 7 V
Voltage range applied to any output in the high-impedance
or power-off state, V _O (see Note 1)
Voltage range applied to any output in the high state, V_O (see Note 1)0.5 V to V_{CC} + 0.5 V
Current into any output in the low state, I _O
Current into any output in the high state, I _O (see Note 2)
Input clamp current, I_{IK} (V _I < 0)
Output clamp current, I_{OK} ($V_O < 0$)
Package thermal impedance, θ_{JA} (see Note 3): DGG package
DL package
Storage temperature range, T _{stg} 65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

SCBS685E - MARCH 1997 - REVISED APRIL 1999

recommended operating conditions (see Note 4)

			SN54LVTH	162240	SN74LVTH	UNIT	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	2.7	3.6	2.7	3.6	V	
VIH	High-level input voltage	2	W	2		V	
VIL	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	20	5.5		5.5	V	
ЮН	High-level output current	6	-12		-12	mA	
IOL	Low-level output current		n	12		12	mA
$\Delta t/\Delta v$	Input transition rise or fall rate Outputs enabled		00	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	Q 200		200		μs/V	
Т _А	Operating free-air temperature	-55	125	-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54	LVTH16	2240	SN74	LINUT					
PA	RAMEIER	TESTC	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT			
VIK		V _{CC} = 2.7 V,	lj = -18 mA			-1.2			-1.2	V			
VOH		$V_{CC} = 3 V,$	I _{OH} = -12 mA	2			2			V			
VOL		$V_{CC} = 3 V,$	I _{OL} = 12 mA			0.8			0.8	V			
		$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10				
	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC} \text{ or } GND$	MIN TYP† MAX MIN TYP† MAX MIN TYP† MAX -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 2 2 2 2 -1.2 -1.2 -1.2 -1.2 2 0.8 0.8 0.8 0.8 0.8 0.8 10 10 10 10 10 10 10 ± 10 ± 1	лΔ								
łı	Dete insute	V _{CC} = 3.6 V	$V_{I} = V_{CC}$			1			1	μΑ			
	Data inputs	VCC = 3.0 V	$V_{I} = 0$		0.8 0.8 \vee 10 10 10 ± 1 ± 1 μ -1 -1 μ -5 -5 μ -5 -75 μ -75 -75 μ -5 -75 μ $\pm 100^*$ $\pm 100^*$ $\pm 100^*$ $\pm 100^*$ $\pm 100^*$ $\pm 100^*$								
loff		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V			2			±100	μΑ			
			V _I = 0.8 V	75	75								
h/h - 1 - N	Data inputs	V _{CC} = 3 V	V _I = 2 V	-75	EL		-75						
ll(hold)		V _{CC} = 3.6 V [‡] ,	$V_{I} = 0$ to 3.6 V		C7D					μΛ			
IOZH	-	V _{CC} = 3.6 V,	V _O = 3 V	4	3	5			5	μA			
IOZL		V _{CC} = 3.6 V,	V _O = 0.5 V	R	,	-5			-5	μA			
IOZPU		$\frac{V_{CC}}{OE} = 0$ to 1.5 V, V _O = OE = don't care	= 0.5 V to 3 V,			±100*			μΑ				
IOZPD		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V _O = OE = don't care	= 0.5 V to 3 V,			±100*			±100	μΑ			
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19				
ICC		$I_{O} = 0,$	Outputs low	5			5		mA				
		$V_{I} = V_{CC}$ or GND	Outputs disabled			0.19			0.19				
∆ICC§		$V_{CC} = 3 V$ to 3.6 V, On Other inputs at V_{CC} or	ne input at V _{CC} – 0.6 V, GND			0.2			0.2	mA			
Ci		VI = 3 V or 0			4			4		pF			
Co		V _O = 3 V or 0			9			9		pF			

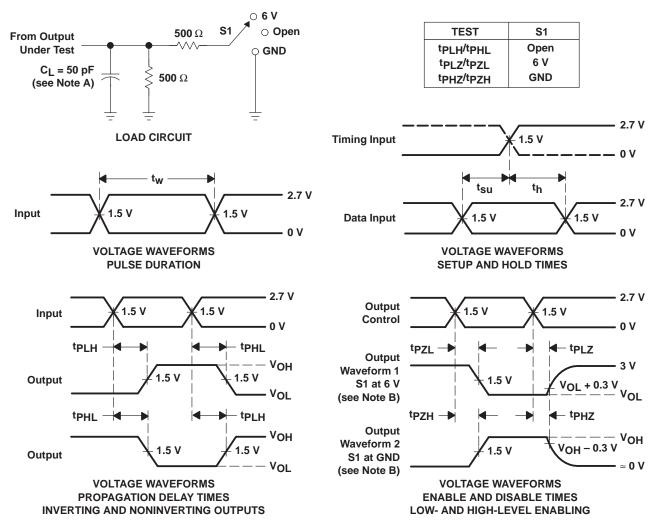
* On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$.

[‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54LVTH162240, SN74LVTH162240 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS685E - MARCH 1997 - REVISED APRIL 1999


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

			S	N54LVT	H162240)		SN74	LVTH16	2240		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		V	V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	түр†	MAX	MIN	MAX	
^t PLH	A	v	1	4.2	M	5	1	2.5	4		4.6	ns
^t PHL		I	1	4.2	ME	5	1	2.9	4		4.6	115
^t PZH	OE	Y	1	5	RE	5.5	1	2.8	4.8		5.7	ns
tPZL	OE OE	I	1	4.9	4	5.1	1	2.8	4.7		4.9	115
^t PHZ	OE	Y	1.9	4.9		5.4	2	3.5	4.7		5.2	ns
^t PLZ	UE	1	1.9	4.7		4.8	2	3.4	4.5		4.5	115
^t sk(o)				9					0.5		0.5	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS685E - MARCH 1997 - REVISED APRIL 1999

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated